TRIDONIC

EM powerLED CLE CPS

LED Driver for AC and DC power supplies

Product description

- LED Driver for mains operation with integrated Simple CORRIDOR FUNCTION (CF)
- For use in central battery systems
- For luminaire installation
- For the use with STARK CLE 1500 EM
- 5 years guarantee

Properties

- Constant current LED Driver with 350 or 470 mA output current
- Simple CORRIDOR FUNCTION (CF) with 10 \% light level
- Constant current mode
- Light output in DC operation (EoF): 0.1 or 1
- SELV
- For emergency lighting systems as per EN 50172
- LED module and sensor available

\rightarrow

Standards, page 4
Wiring diagrams and installation examples, page 5

EM powerLED CLE CPS

LED Driver for AC and DC power supplies

Technical data

Rated supply voltage	$220-240 \mathrm{~V}$	
Voltage range AC	$198-264 \mathrm{~V}$	
Voltage range DC	$176-280 \mathrm{~V}$	
Mains frequency	$0 / 50 / 60 \mathrm{~Hz}$	
Leakage current (PE)	0 mA	
Overvoltage protection	320 V (for 1 h$)$	
Max. permitted forward voltage LED	33 V	
Turn on time (at 230 V, 50 Hz, full load)	100 ms	
Changeover time between mains and emergency	$<380 \mathrm{~ms}$	
Changeover time between emergency and mains	$<100 \mathrm{~ms}$	
Ambient temperature ta	$-25 \ldots 55^{\circ} \mathrm{C}$	
Max. casing temperature tc	$75^{\circ} \mathrm{C}$	
Dimensions LxBxH	$123 \times 79 \times 31 \mathrm{~mm}$	
Type of protection	$\mathrm{IP20}$	
		$560 \mathrm{pc}(\mathrm{s})$.
EM powerLED 12W CLE CPS	$\mathbf{8 9 8 0 0 5 2 7}$	
EM powerLED 15W CLE CPS	$\mathbf{8 9 8 0 0 1 7 7}$	

Specific technical data

Type	Output current	Output current tolerance	Min. output voltage ${ }^{2}$	Max. output voltage ${ }^{\text {(2 }}$	Typ. output power	$\begin{aligned} & \text { Input power } \\ & \text { (at } 230 \mathrm{~V}, 50 \mathrm{~Hz} \text {, } \\ & \text { full load) } \end{aligned}$	$\begin{aligned} & \text { Input current } \\ & \text { (at } 230 \mathrm{~V}, 50 \mathrm{~Hz} \text {, } \\ & \text { full load) } \end{aligned}$	$\begin{gathered} \text { Efficiency } \\ (\mathrm{at} 230 \mathrm{~V}, 5 \mathrm{5} \\ \mathrm{Hz}) \end{gathered}$	$\begin{gathered} \lambda \\ 0(\text { at } 230 \mathrm{~V}, 50 \mathrm{~Hz}, \\ \text { full load) } \end{gathered}$	Ambient temperature ta ${ }^{\text {® }}$	tc/ta for \geq $50.000 h^{(1)}$
Normal operation											
EM powerLED 12W CLE CPS	350 mA	5\%	22 V	33 V	10.61 W	13.6 W	75 mA	78%	0.8c	$-5 \ldots 55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$
EM powerLED 15W CLE CPS	470 mA	5\%	22 V	33 V	14.25 W	17.0 W	100 mA	83\%	0.8c	$-5 . . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$
CF operation											
EM powerLED 12W CLE CPS	29 mA	15\%	22 V	33 V	0.75 W	1.7 W	15 mA	44%	0.5c	-	-
EM powerLED 15W CLE CPS	43 mA	15\%	22 V	33 V	1.12 W	2.0 W	18 mA	49%	0.5c	-	-
Emergency operation 100%											
EM powerLED 12W CLE CPS	350 mA	5\%	22 V	33 V	10.61 W	13.6 W	75 mA	78\%	-	-	-
EM powerLED 15W CLE CPS	470 mA	5\%	22 V	33 V	14.25 W	17.0 W	100 mA	83\%	-	-	-
Emergency operation 10 \%											
EM powerLED 12W CLE CPS	29 mA	15\%	22 V	33 V	0.75 W	1.7 W	15 mA	44%	-	-	-
EM powerLED 15W CLE CPS	43 mA	15\%	22 V	33 V	1.12 W	2.0 W	18 mA	49\%	-	-	-

[^0]
Product description

- Motion detector for luminaire installation
- Motion detection through glass and thin materials (except metal)
- For automatic on/off switching of electronic ballasts with corridorFUNCTION
- "Bright-Out" function: luminaire is not switched on if there is adequate brightness
- Delay time, detection range and light value for the "Bright-Out" function can be set via 3 potentiometers
- Max. installation height 5 m
- Infinitely variable range ($0.5-5.0 \mathrm{~m}$)

Ordering data

Type	Article number	Packaging, carton	Weight per pc.
SWITCH Sensor HF 5BP	$\mathbf{2 8 0 0 0 0 8 6}$	$4 \mathrm{pc}(\mathrm{s})$.	$0,079 \mathrm{~kg}$

Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384
according to EN 60598-2-22
according to EN 50172
EN 61347-2-7

Mechanichal details

Case manufactured from polycarbonate.
Glow-wire test according to EN 61347-1 with increased temperature of 850
${ }^{\circ} \mathrm{C}$ passed.

Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED ouput is switched off. After elimination of the short circuit the nominal operation is restored automatically.

No-load operation

The LED Driver is not damaged in the no-load operation. The max. output voltage can be obtained during no-load operation.

Storage conditions
Humidity:
5% up to max. 85%,
not condensed
(max. 56 days/year at 85 \%)
Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be within the specified temperature range (ta) before they are operated.

Expected life-time			
Type	ta $=\mathbf{4 5}{ }^{\circ} \mathrm{C}$	$\boldsymbol{t a}=\mathbf{5 5}{ }^{\circ} \mathbf{C}$	
EM powerLED 12W CLE CPS	tc	$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
	Life-time	$100,000 \mathrm{~h}$	$50,000 \mathrm{~h}$
EM powerLED 15W CLE CPS	tc	$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
	Life-time	$100,000 \mathrm{~h}$	$50,000 \mathrm{~h}$

Maximum loading of automatic circuit breakers

Automatic circuit breaker type	B10	B13	B16	B20	Inrush current	
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$I_{\text {max }}$	time
EM powerLED 12W CLE CPS	90	130	130	130	10 A	120 s
EM powerLED 15W CLE CPS	90	130	130	130	10 A	$120 \mu \mathrm{~s}$

Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

Type	THD	3	5	7
EM powerLED 12W CLE CPS	43	32	9	12
EM powerLED 15W CLE CPS	38	33	20	8

Ballast lumen factor (BLF) in \%

	Corridor mode	DC operation
EM powerLED 12W CLE CPS	10	$10 / 100$
EM powerLED 15W CLE CPS	10	$10 / 100$

Wiring diagram EM powerLED with sensor

Switching behaviour:

\mathbf{L}	CF	Output LED
off	off	off
off	on	off
on	off	10%
on	on	100%

DC operation behaviour:

Emergency level EoF: 0.1

The sensor is not activ in DC operation.

PIR input $\widehat{=} 230 \mathrm{~V}$

Wiring diagram EM powerLED

220-240 V

PIR input $\widehat{=} 230 \mathrm{~V}$

The mains power must be removed before changing the LED load.

Secondary switching of LEDs is not allowed and may cause damage to the LEDs. The hot plug-in of LEDs during normal operation may result in current peaks of up to 50% above the typical output current.

DC operation behaviour:

The emergency level EoF, (0.1 or 1) depends on the polarity of the DC voltage.

Polarity of the DC voltage

Polarity of the DC voltage		
\mathbf{L}	+	-
\mathbf{N}	-	+
$\mathbf{C F}$	+	-
Emergency level EoF F_{1}	1	0.1

Wiring instructions

- The LED terminals are classified as SELV. Keep the wiring of the input terminals separated from the wiring of the SELV equivalent terminals or consider special wiring (double insulation, 6 mm creepage and clearance) when these connections should be kept SELV.
- LED leads should be separated from the mains connections and wiring for good EMC performance.
- Maximum lead length on the LED terminals is 3 m . For a good

EMC performance keep the LED wiring as short as possible.

IDC interface

- solid wire with a cross section of $0.5 \mathrm{~mm}^{2}$ according to the specification from WAGO

Horizontal interface

- solid wire with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$ according to the specification from WAGO
- strip $7.5-8.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the terminals

Installation instruction

Max. torque for the mounting screws: $0.5 \mathrm{Nm} / \mathrm{M} 4$.

You must make sure that the LED is connected with the correct polarity.
LEDs that are connected to EM powerLED should have polarity reversal protection such as a Schottky diode. There may be irreversible damage if the LED is connected with the wrong polarity. The protection device must be capable of handling a load of more than 700 mA .

Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data

Guarantee conditions at www.tridonic.com \rightarrow Services

Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

[^0]: ${ }^{\text {D }}$ Ambient temperature range ta defined in normal operation

 - Output voltage range defined in normal operation. LED forward voltage will decrease in CF operation.

