TRIDONIC

LED Driver

Compact fixed output

Driver LC 10W 150-400mA flexC SC EXC
EXCITE series

Product description

- Constant current LED Driver
- Dimmable via ready2mains ${ }^{\text {TM }}$ Gateway
- Dimming range 15 - 100 \% (Depending on load. For details refer to chapter 4.7 Dimming in data sheet.)
- Can be either used build-in or independent with clip-on strain-relief (see accessory)
- Adjustable output current between 150 and 400 mA
via ready 2 mains $^{\text {TM }}$ Programmer or 1 -select 2 plugs
- Max. output power 10 W
- Up to 83 \% efficiency
- Nominal life-time up to 100,000 h
- 5-year guarantee

Housing properties

- Casing: polycarbonate, white
- Type of protection IP20

Interfaces

- ready2mains ${ }^{\text {TM }}$ (configuration and dimming via mains)
- Terminal blocks: 45° push terminals

Functions

- Adjustable output current in 1 mA steps (ready 2 mains $^{\text {™ }}$, I-select 2)
- Dimmable via ready2mains ${ }^{T M}$ interface
- Protective features (overtemperature, short-circuit, overload, no-load, input voltage range)
- Suitable for emergency escape lighting systems acc. to EN 50172

Benefits

- Application-oriented operating window for maximum compatibility

With strain-relief

- Best energy savings due to high efficiency and dimming via ready2mains ${ }^{T M}$
- Flexible configuration via ready 2 mains ${ }^{\text {TM }}$ and I -select 2
- Reliability proven by life-time up to $100,000 \mathrm{~h}$ and 5-year guarantee

Typical applications

- For downlight, spotlight and decorative applications

\rightarrow

Standards, page 4

TRIDONIC

LED Driver
Compact fixed output

Driver LC 10W 150-400mA flexC SC EXC
EXCITE series

Rated supply voltage	220-240 V
AC voltage range	198-264V
DC voltage range	176-280 V
Mains frequency	$0 / 50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}$,
Typ. current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{\text {(2) }}$	56.3 mA
Typ. current ($220 \mathrm{~V}, 0 \mathrm{~Hz}$, full load, 100% dimming level) ${ }^{(2}$	54.5 mA
Leakage current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)(1) ©	< $250 \mu \mathrm{~A}$
Max. input power	12 W
Typ. efficiency (at $230 \mathrm{~V} / 50 \mathrm{~Hz} /$ full load) ${ }^{\text {2 }}$	83\%
λ (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{\text {(}}$	0.92 C
Typ. input current in no-load operation	12.5 mA
Typ. input power in no-load operation	0.5 W
In-rush current (peak / duration)	$14 \mathrm{~A} / 280$ Hs
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)(1)	< 10 \%
Time to light (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{\text {(1) }}$	< 500 ms
Time to light (DC mode)	< 500 ms
Switchover time (AC/DC)	< 0.2 s
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 50 ms
Output current tolerance ${ }^{\text {© © © © }}$	± 5 \%
Max. output current peak (non-repetitive)	s output current + 35%
Output LF current ripple ($<120 \mathrm{~Hz}$)	$\pm 5 \%$
Max. output voltage (no-load voltage)	60 V
Dimming range ${ }^{\text {® }}$	15-100\%
Mains surge capability (between L-N)	1 kV
Mains surge capability (between L/N - PE)	2 kV
Surge voltage at output side (against PE)	< 500 V
Dimensions L $\times W \times H$	$97 \times 43 \times 30 \mathrm{~mm}$

Specific technical data

Type	Output current(4) (6)	Min. forward voltage	Max. forward voltage	Max. output power	Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Typ. current consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Max. casing temperature tc \dagger	Ambient temperature ta max.	1-select 2 resistor value ${ }^{\text {(6) }}$
	150 mA	15 V	40.0 V	6 W	7.6 W	39 mA	$75^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$	open
	175 mA	15 V	40.0 V	7 W	8.7 W	43 mA	$75^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$	$28.75 \mathrm{k} \Omega$
	200 mA	15 V	40.0 V	8 W	9.9 W	48 mA	$75^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$	$25.00 \mathrm{k} \Omega$
	225 mA	15 V	40.0 V	9 W	10.8 W	52 mA	$75^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$	$22.22 \mathrm{k} \Omega$
	250 mA	15 V	40.0 V	10 W	12.0 W	56 mA	$75^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$20.00 \mathrm{k} \Omega$
LC 10W 150-400mA flexC SC EXC	275 mA	15 V	36.3 V	10 W	12.0 W	56 mA	$75^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	18.8 k
	300 mA	15 V	33.3 V	10 W	12.0 W	56 mA	$75^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$16.67 \mathrm{k} \Omega$
	325 mA	15 V	30.7 V	10 W	12.0 W	56 mA	$75^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$15.38 \mathrm{k} \Omega$
	350 mA	15 V	28.6 V	10 W	12.0 W	56 mA	$75^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$14.29 \mathrm{k} \Omega$
	375 mA	15 V	26.7 V	10 W	12.0 W	56 mA	$75^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$13.33 \mathrm{k} \Omega$
	400 mA	15 V	25.0 V	10 W	12.0 W	56 mA	$75^{\circ} \mathrm{C}$	$-25 \ldots+6{ }^{\circ} \mathrm{C}$	short circuit (0Ω)

[^0]
Product description

- Optional strain-relief set for independent applications
- Transforms the LED Driver into a fully class II compatible LED Driver (e.g. ceiling installation)
- Easy and tool-free mounting to the LED Driver, screwless cable-clamp channels for long strain-relief ($30 \times 43 \times 30 \mathrm{~mm}$)
- With screws for short strain-relief $(15 \times 34 \times 30 \mathrm{~mm})$
- Overall length $=$ length $L($ LED Driver $)+2 \times 30 \mathrm{~mm}$ (long strain-relief set), $2 \times 15 \mathrm{~mm}$ (short strain-relief) or long and short strain-relief any combination
- Standard SC (L = 30 mm) available as non-pre-assembled and pre-assembled
- Short SC (L = 15 mm) only pre-assembled available

ACU SC $30 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR SET ACU SC $30 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR SET 300 (28001168, non-pre-assembled) (28001351, non-pre-assembled, 300 pcs. packaging)

ACU SC $30 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR PA (28001699, pre-assembled)

ACU SC $15 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR PA (28001574, pre-assembled)

ACU SC $30 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR SET / PA

ACU SC $15 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR PA

Ordering data

Type	Article number	Packaging carton ${ }^{(1}$	Packaging outer box	Weight per pc.
ACU SC 43x30mm CLIP-ON SR SET	$\mathbf{2 8 0 0 1 1 6 8}$	$10 \mathrm{pc}(\mathrm{s})$.	$500 \mathrm{pc}(\mathrm{s})$.	0.021 kg
ACU SC 43x30mm CLIP-ON SR SET 300	$\mathbf{2 8 0 0 1 3 5 1}$	$300 \mathrm{pc}(\mathrm{s})$.	$300 \mathrm{pc}(\mathrm{s})$.	0.021 kg
ACU SC $\mathbf{3 0 \times 4 3 \times 3 0 m m ~ C L I P - O N ~ S R ~ P A ~}$	$\mathbf{2 8 0 0 1 6 9}$	$10 \mathrm{pc}(\mathrm{s})$.	$500 \mathrm{pc}(\mathrm{s})$.	0.021 kg
ACU SC $\mathbf{1 5 x 4 3 \times 3 0 m m ~ C L I P - O N ~ S R ~ P A ~}$	$\mathbf{2 8 0 0 1 5 7 4}$	$10 \mathrm{pc}(\mathrm{s})$.	$1,200 \mathrm{pc}(\mathrm{s})$.	0.010 kg

[^1]
Product description

- Ready-for-use resistor to set output current value
- Compatible with LED Driver featuring l-select 2 interface; not compatible with l-select (generation 1)
- Resistor is base isolated
- Resistor power 0.25 W
- Current tolerance $\pm 2 \%$ additional to output current tolerance
- Compatible with LED Driver series PRE and EXC

Example of calculation for third party resistors

- $\mathrm{R}[\mathrm{k} \Omega$] = $5 \mathrm{~V} / \mathrm{I}$ _out [mA] x 1000
- Resistor value tolerance $\leq 1 \%$; resistor power $\geq 0.1 \mathrm{~W}$; base isolation necessary
- When using a resistor value beyond the specified range, the output current will automatically be set to the minimum value (resistor value too big), respectively to the maximum value (resistor value too small)

Ordering data

Type	Article number	Colour	Marking	Current	Packaging bag	Weight per pc.
I-SELECT 2 PLUG 150MA BL	$\mathbf{2 8 0 0 1 1 0 2}$	Blue	0150 mA	150 mA	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 200MA BL	$\mathbf{2 8 0 0 1 1 0 4}$	Blue	0200 mA	200 mA	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 250MA BL	$\mathbf{2 8 0 0 1 1 0 6}$	Blue	0250 mA	250 mA	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 300MA BL	$\mathbf{2 8 0 0 1 1 0 8}$	Blue	0300 mA	300 mA	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 350MA BL	$\mathbf{2 8 0 0 1 1 1 0}$	Blue	0350 mA	350 mA	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 400MA BL	$\mathbf{2 8 0 0 1 1 1 2}$	Blue	0400 mA	400 mA	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG MAX BL	$\mathbf{2 8 0 0 1 0 9 9}$	Blue	MAX	MAX	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg

1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 62384
EN 61547
According to EN 50172 for use in central battery systems
According to EN 60598-2-22 suitable for emergency lighting installations
Housing fulfils requirements for reinforced insulation according EN 60598-1.

2. Thermal details and life-time

2.1 Expected life-time

Expected life-time						
Type	Output current	ta	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$\mathbf{6 0}{ }^{\circ} \mathrm{C}$
LC 10W 150-400mA flexC SC EXC	$150-400 \mathrm{~mA}$	tc	$55^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
		Life-time	$>100,000 \mathrm{~h}$	$>100,000 \mathrm{~h}$	$79,000 \mathrm{~h}$	$56,000 \mathrm{~h}$

The LED Driver is designed for a life-time stated above under reference conditions and with a failure probability of less than 10%.

The relation of tc to ta temperature depends also on the luminaire design.
If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical
components (e.g. ELCAP) measured. Detailed information on request.

3. Installation / wiring

3.1 Circuit diagram

For wiring in dimming operation refer to the ready2mains Gateway data sheet.

3.2 Wiring type and cross section

The wiring can be in stranded wires with ferrules or solid with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$. Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.
Use one wire for each terminal connector only.
3.3 Loose wiring

Press down the "push button" and remove the cable from front.
3.4 Fixing conditions when using as independent Driver with Clip-On

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device. Minimum distances stated below are recommendations and depend on the actual luminaire.
Is not suitable for fixing in corner.

LED module/LED Driver/supply
wire preparation:
$0.5-1.5 \mathrm{~mm}^{2}$

3.5 Wiring guidelines

- The cables should be run separately from the mains connections and mains cables to ensure good EMC conditions.
- The LED wiring should be kept as short as possible to ensure good EMC. The max. secondary cable length is 2 m (4 m circuit), this applies for LED output.
- Secondary switching is not permitted.
- The LED Driver has no inverse-polarity protection on the secondary side. Wrong polarity can damage LED modules with no inverse-polarity protection.
- Wrong wiring of the LED Driver can lead to malfunction or irreparable damage.

3.6 Hot plug-in

Hot plug-in is not supported due to residual output voltage of $>0 \mathrm{~V}$.
If a LED load is connected the device has to be restarted before the output will be activated again.
This can be done via mains reset or via interface ready2mains.

3.7 Earth connection

The earth connection is conducted as protection earth (PE). If the LED Driver will be earthed, protection earth (PE) has to be used.
There is no earth connection required for the functionality of the LED Driver Earth connection is recommended to improve following behaviour.

- Electromagnetic interferences (EMI)
- Transmission of mains transients to the LED output

In general it is recommended to earth the LED Driver if the LED module is mounted on earthed luminaire parts respectively heat sinks and thereby representing a high capacity against earth.

3.8 l-select 2 resistors connected via cable

For details see:

http://www.tridonic.com/com/en/download/technical/LCA_PRE_LC_EXC_ProductManual_en.pdf.

4. Electrical values

4.1 Operating window

Make sure that the LED Driver is operated within the given window under all operating conditions. Special attention needs to be paid at dimming and DC emergency operation as the forward voltage of the connected LED modules varies with the dimming level, due to the implemented amplitude dimming technology. Coming below the specified minimum output voltage of the LED Driver may cause the device to shut-down.
See chapter "6.8 DC emergency operation" for more information.

4.2 Efficiency vs load

4.3 Power factor vs load

4.4 THD vs load

- - - - - - 400 mA

100 \% load corresponds to the max. output power (full load) according to the table on page 2.

4.5 Maximum loading of automatic circuit breakers

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation Ø	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$\mathrm{I}_{\text {max }}$	time
LC 10W 150-400mA flexC SC EXC	40	56	64	80	24	31	38	48	14 A	280 s

Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.

4.6 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load)

 in \%| | THD | 3. | 5. | 7. | 9. | 11. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| LC 10W 150-400mA flexC SC EXC | <9 | <5 | <4 | <3 | <3 | <2 |

4.7 Dimming

Dimming range 15 to 100\%.
The minimum achievable dimming level depends on the connected load. The operating window shows the minimum reachable power in dimmed state. The output power at minimum dimming level is 15% of absolute the max. output power of the LED Driver for all loads within the entire operating window.
For loads below the max. output power, the minimum dimming level is higher.
To determine the minimum dimming level for a certain load carefully read the operating window.
For further information please refer to your Tridonic sales contact.

5. Interfaces / communication

5.1 Control input ready2mains (L, N)

The digital ready2mains protocol is modulated onto the mains signal which is wired to the mains terminal (L and N).

6. Functions

6.1 Function: adjustable current

The output current of the LED Driver can be adjusted in a certain range For adjustment there are two options available.

Option 1: I-select 2
By inserting a suitable resistor or third party resistor into the I-select 2 interface, the current value can be adjusted. The relationship between output current and resistor value can be found in the chapter
"Accessories I-SELECT 2 Plugs".

APlease note that the resistor values for 1 -select 2 are not compatible with I-select (generation 1). Installation of an incorrect resistor may cause irreparable damage to the LED module(s).

Resistors for the main output current values can be ordered from Tridonic (see accessories).

Option 2: ready2mains
Adjustment is done by the ready2mains Programmer and the corresponding configuration software (see ready 2 mains documentation)

A
Current adjustment can only be done five times over ready2mains. To program the LED Driver a connected load is necessary that is within the operating window of the LED Driver.

The priority for current adjustment methods is I-select 2 followed by ready2mains (lowest priority).

6.2 ready 2 mains - configuration

The ready2mains interface can be used to configure the main parameters of LED Drivers via the mains wiring, such as LED output current. These parameters can be adjusted either via ready2mains-capable configuration software or directly via the ready2mains Programmer.

6.3 ready 2 mains - dimming

ready2mains allows for mains-based group dimming, controlled via the ready 2 mains protocol and appropriate dimming interfaces.

For details on the operation of ready2mains and its components see the relevant technical information.

6.4 Short-circuit behaviour

In case of a short-circuit at the LED output the LED output is switched off. After restart of the LED Driver the output will be activated again. The restart can either be done via mains reset or via interface ready2mains.

6.5 No-load operation

The LED Driver will not be damaged in no-load operation. The output will be deactivated and is therefore free of voltage. If a LED load is connected the device has to be restarted before the output will be activated again.

6.6 Overload protection

If the output voltage range is exceeded the LED Driver turns off the LED output. After restart of the LED Driver the output will be activated again. The restart can either be done via mains reset or via interface ready2mains.

6.7 Overtemperature protection

The LED Driver is protected against temporary thermal overheating. If the temperature limit is exceeded the output current of the LED module(s) is reduced. The temperature protection is activated approx. $+5^{\circ} \mathrm{C}$ above tc max (see page 2). On DC operation this function is deactivated to fulfill emergency requirements.

6.8 DC emergency operation

The LED Driver is designed to operate on DC voltage and pulsed DC voltage. For a reliable operation, make sure that also in DC emergency operation the LED Driver is run within the specified conditions as stated in chapter "4.1 Operating window".

Light output level in DC operation (EOF ${ }_{j}$): 100 \% (cannot be adjusted)

The voltage-dependent input current of Driver incl. LED module is depending on the used load.

The voltage-dependent no-load current of Driver (without or defect LED module) is for:
AC: < 14 mA (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$)
DC: < 5 mA (at $275-186 \mathrm{~V}, 0 \mathrm{~Hz}$)

7. Miscellaneous

7.1 Isolation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an isolation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The isolation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ dc). To avoid damage to the electronic devices this test must not be conducted.

7.2 Conditions of use and storage

Enviromental conditions: 5% up to max. 85%,
not condensed
(max. 56 days/year at 85%)
Storage temperature: $\quad-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be acclimatised to the specified temperature range (ta) before they can be operated.

7.3 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data

Guarantee conditions at www.tridonic.com \rightarrow Services

Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

[^0]: ${ }^{(1)}$ Valid at 100% dimming level.
 (2) Depending on the selected output current.
 ${ }^{(3)}$ The min. achievable dimming level depends on the connected load. For details refer to chapter 4.7 Dimming in data sheet.
 (4) The table only lists a number of possible operating points but does not cover each single point. The output current can be set within the total value range in 1 -mA-steps.
 (5) Not compatible with I-select (generation 1)
 ${ }^{6}$ Output current is mean value
 (8) At output current < 200 mA the output current tolerance increases to max. $\pm 10 \%$.

[^1]: ${ }^{(1)}$ 28001168: A carton of 10 pcs. is equal to 10 sets, each with 2 strain-reliefs parts.
 28001351: A carton of 300 pcs. is equal to 300 sets, each with 2 strain-reliefs parts.
 28001699 + 28001574: A carton contains exactly 10 pcs. strain-reliefs (no sets).

